University of

,ﬂt Nottingham

k] e ey o
[=] yee b

II " Fl II‘

v ey i

e o £ N N
> B, RIS .4‘3' : b,
3 o B A 2 B W
. : - iR

and Mechatroni «
MMME3085“"

Computer.k

Dr Louise Brown

UK | CHINA | MALAYSIA

Recap on functions and memory

int a (VOid); // Function pr‘ototypes http://www.tenouk.com/ModuleZ.html
int b (void); // memory is not allocated until
int ¢ (void); // functions are actually used

int a(void)

{
. . Higher ! :

b()’ ' me:gormr;:r ' :

C () 5 Frame Frame Frame Frams Frame Frame Frame

return @_; for for for for for for for
} maing) mairng) mait i) maing) maing) maing) maing)

Frame Frame Frams Frame Frame
: : for for for afl for all for af)
int b(void 5 o |al al) ,
() Lomrey Frame Frame retim fiom
{
e O T ' : for : for o) : ' al)

return 0; : b B : : : '

} " man(l ! . rehun ! . whun fiom
calls &) Eaﬂmhi frombi() Eijﬂjﬂi o]
calls e

int c(void) b()
{

return 0;

} A ‘Frame’ is the term for the block of

memory used by a function
int main(void)
{
a();

return 0;

http://www.tenouk.com/ModuleZ.html

Copies of variables are created when function called

double CalculateArea (double);

// This is the main code for our application

int main()
{
double radius, area; Memory Used to SEDI’G
radius = 1.0; .
area = CalculateArea (radius); 1.0 radius main
return 0; N B
3.141592 area
} —
1.0 dRadius Calculate
Area
// And here is our function L 3.141592 area

double CalculateArea (double dRadius)
{

double area;
area = 3.141592 * dRadius * dRadius;
return (area);

Memory Is released on return from function

double CalculateArea (double);
// This is the main code for our application

int main()

{ double radius, area; Memory Used to store
radius = 1.0; .
area = CalculateArea (radius); 1.0 radius main
return 0;
3.141592 area
}

// And here is our function

double CalculateArea (double dRadius)
{

double area;
area = 3.14159265 * dRadius * dRadius;
return (area);

Lab 1 Programming Assignment

Submit a single .zip file named Lab1PrepXXX.zip,
where XXX are your initials

Submission deadline: 3pm, Thursday 26t October
Anything submitted after 3.01pm will get a late

submission penalty — upload in plenty of time to
avoid technical glitches!

ﬂf Introduction

e

=Today we will cover:

»Chapter 13 — Pointers — part 1

=Chapter 14 — Functions — part 2

=Chapter 15 — Pointers part 2 — using with arrays
»Chapter 20 — Preprocessor directives

Start recording!!

Chapter 13

Pointers: Part 1

ﬂf Pointers (1)

—~~

This Is a key to C but something that needs careful thought

Do not worry if you do not grasp it first time

It is something that needs ‘contemplation’

!n': Pointers (2)

A pointer Is a special type of variable in which we store a
memory address

Pointers have the ‘ability’ to know how much storage (in bytes)
the item to which they are pointing takes up iIn memory

ﬂf Pointers (3)

e

Pointers are used (in particular)
* For Dynamic Arrays
» For Speed (both in Arrays and when calling functions)
* To Maximize the use of memory

When using pointers we go directly to a memory address

* Note: When we get/set a variable, e.g. a=10 the system does this
for us, looking up the memory address of a and then storing the
value 10 at that location.

Pointers: the basics

For each variable type in C we can declare a pointer
Initially a pointer points ‘nowhere’

It Is then up to us (as programmers) to create the code that assign to
the pointer to the address of

= Variable,
= Array or
* Function (we will not be doing this!)

Pointers: Iin practice

There are three ‘steps’ 'l in using a pointer when accessing an existing
variable

» Create the pointer
» Assign to it the address of an existing variable

» Use the pointer

= 'INote: There is a 4" step when using pointers with arrays, we cover this later

ﬂf Pointers: Create

—~~

We define a pointer in much the same way as any variable, the
only difference is we precede the variable name with a *

Here are a few examples
int *i;

char *c;
float *f;

Pointers: Assign

If we have an existing variable we can request its address with the & operator (you have
been using this in scanf)

Since this an address of the variable, we can then assign it to a pointer that has been
created to store such an address

Memory

. % Address Memory Used to store
:.L nt *1; 2340 10 Data
1 = &Dat d, 2344 Yy’ Letter

22.3 fVar

2346
char *c; |
i

c = &Letter; 2340

2344 o
float *f 5 2346 f
+ = &fVar;

Remember: Pointer type must match variable type

Pointers: Accessing

Once we have our pointer ‘pointing’ to a memory address we can ‘access’
that address to get/set values.

To indicate that we want to access the memory address stored in a pointer
(the formal term for which is pointer dereferencing) we again use the *

A few examples:

printf("%d", *1i); // Get the item at the memory address stored in i
printf("%c", *c); // Get the item at the memory address stored in i

int j = *i; // Get the item at the memory address stored in i
// and store in j

*1 = 72; // Store the value 72 in the memory address stored in i

Accessing pointers illustrated (1)

printf("%d", *1i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i
int j = *i; // Get the item at the memory address stored in i and store in j
] = 72; // Store the value 72 in the memory address stored in i
Memory
Address Memory Data
— 2340 10
2344 vy’ Letter
2346 223 fVar
2340 i
2344 c
2346 f

Accessing pointers illustrated (2)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i
int j = *i; // Get the item at the memory address stored in i and store in j
] = 72; // Store the value 72 in the memory address stored in i
Memory
Address Memory Data
2340 10
., 2344 vy’ Letter
2346 223 fVar
2340 i
2344 c
2346 f

Accessing pointers illustrated (3)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i
int j = *i; // Get the item at the memory address stored in i and store in j
*1 = 72; // Store the value 72 in the memory address stored in i
Memory
Address Memory Data
— 2340 10
2344 vy’ Letter
2346 22.3 fVar
2340 i
2344 c
2346 f
10 <«
j

Accessing pointers illustrated (4)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i
Int j = *i; // Get the item at the memory address stored in i and store in j
*1 = 72; // Store the value 72 in the memory address stored in i
Memory
Address Memory Data
—> 2340 72
2344 vy’ Letter
2346 223 fVar
2340 i
2344 c
2346 f
10 j

Pointers: In summary

1: Declare variable, e.q.
int a,b;
float c,d;

2. Declare pointer variables
int *p, *q;
float *r, *s

3: Assign memory addresses of variables to pointers
p=& ; =& ; r = &c; s = &d;

4: Pass them or use them !
scanf("%d", p)- Note, same as: scanf("%d",&a);

*q = 7;

C13/accessing_via_pointers.c

Pointers: A quick test

What is the value in C following the last executed line?

int a=1, *b, c ; /* Define varilable types,
initialise a to 1 */

b = &a; /* b contains the address of a */

c = *b + 1; /* ¢ contains what ? */

Chapter 14

Function Programming (Part 2)

ﬂn' Functions - a review

e

Functions - a quick reminder

Live outside of ‘main()’ code
» They can be In other source files If you wish
» Have (if required) a prototype in a header file

Functions

All Functions consist of three parts:

= Return type

Any valid C variable type or void
* Name

A name of your choice
= Argument list

At least one valid C variable (or void); multiple ones are separated by
commas

Plus some code of course!
We remember too, a function can return, at most, one thing

Now consider this..

Often when we do a calculation we may want to know a number of
things:

= For a set of numbers we might wish to know the minimum,
maximum & average

* For a quadratic equation, the two possible solutions

We know we can write functions to do these tasks, but a function can
only return one value

So how do we get round this?

©F wel.

—~~

We could write functions to do each of the tasks individually
» But this would be very inefficient
"e.g.
* To find the minimum, max & average of an array of number we
would have to loop across all the variables three times

» Better (more efficient) to loop once and do all three tasks at the
same time

There is a solution ©
* And solution is to use pointers!

Functions using pointers for parameters

By Reference

» Rather than pass variables to functions, we pass the memory
address where variable(s) are stored

» Remember: To obtain the memory address of variable we prefix it
with &

Exactly as we have been doing with scanf

This ‘gets round’ the problem of
= \ariables being ‘private’ to functions

So back to the pictures...

By reference: note the & and * (1)

void CalculateArea (double Radius, double *pArea); // note the ¢*’
// This is the main code for our application

int main() Memory
{ Address Memory Used to store
dou?le radius, area; 2340
radius = 1.0;
CalculateArea (radius, &area); 2348
return 0;

// And here is our function

void CalculateArea (double Radius, double *pArea)

{

*pArea = 3.14159265 * Radius * Radius;
return;

By reference: note the & and * (2)

void CalculateArea (double Radius, double *pArea); // note the ¢*’

// This is the main code for our application

int main() Memory

{ Address Memory Used to store
double radius, area; 2340 1.0 radius -
radius = 1.0; amn
CalculateArea (radius, &area); 2348 area

return 0;

// And here is our function

void CalculateArea (double Radius, double *pArea)

{

*pArea = 3.14159265 * Radius * Radius;
return;

By reference: note the & and * (3)

void CalculateArea (double Radius, double *pArea); // note the *’

// This is the main code for our application

int main() Memory
{ Address Memory Used to store
double radius, area; .
1.0 radius .
radius = 1.0; 2340 ain
CalculateArea (radius, &area); 2348 area

return 0; \ Values/Addresses 2356 1.0 Radius Calculate
} of the variables 2362 2348 | pArea Area
(which are COPIED
to the function)

// And here is our function

void CalculateArea (double Radius, double *pArea)

{

*pArea = 3.14159265 * Radius * Radius;
return;

By reference: note the & and * (4)

void CalculateArea (double Radius, double *pArea); // note the ¢*’

// This is the main code for our application

int main() Memory
{ Address Memory Used to store
double radius, area; 2340 1.0 radius .
radius = 1.0; am
CalculateArea (radius, &area); 2348 i area
return 0; 2356 1.0 Radius Calculate
) 2362 2348 pArea Area

// And here is our function

void CalculateArea (double Radius, double *pArea)

{

*pArea = 3.14159265 * Radius * Radius;

} return;\ The * here mean we access the memory locations (to get/set values)
The ‘others’ are multiplication signs

By reference: note the & and * (5)

void CalculateArea (double Radius, double *pArea); // note the ¢*’

// This is the main code for our application

int main() Memory

{ Address Memory Used to store
dou?le radius, area; 2340 1.0 cadius '
radius = 1.0; ain

. 3.14159265

CalculateArea (radius, &area); 2348 area
return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)

{

*pArea = 3.14159265 * Radius * Radius;
return;

LC14\pointer_function_example_1.c

Memory addresses of Variables (1)

Please note:

* In the previous few slides the memory addresses were ‘'made up’
for purposes of the example

» \We cannot predict the memory address that a variable will be
stored at

* The ‘&’ solves the problem by providing us with the memory
address at which a variable is being stored

Memory addresses of Variables (2)

Expanding the process:
" In the 15t example demonstrated we were only calculating one thing

* As such this was a rather ‘odd’ way to get a result (we could
have just used the return value)

* The reason for this approach becomes more obvious when we aim
to calculate multiple things in the same function

» e.g. the volume and surface area of a cylinder

LC14\pointer_function_example_2.c

Summary so far...

When we call a function we (if needed) can pass two types of
parameters

» Formal: Values (either variables or ‘actual’ values — eg 3.0, ‘a’ etc.).

= References: The location in MEMORY where VARIABLES are
being stored

In either case please remember

* The parameters passed (formal or reference) are COPIED Into new
variables that exist in memory as long as the called function runs

Combining Pointers & Functions (1)

Now we have considered this, let us consider how we apply this to our quadratic
equation solver

BSolving: ax® +bx+c=0 (:_ Start _:}

Declare variables a, b, ¢c and d
Declare x1 and x2

————— e e A e I

I Fead the values for a,. b, and ¢ I

i Yes

Iz &= OF IDiesplay, not gquadratic]

Mo Wes
|d =12 —q*a*c | Is b = 0%

Dhiisplay Is
I7e Feal Answer __di__ =¢---II
e P}

—
Fail to talke the ?:g_____---—“_’f —

sguare root of —r, (d)y=0. == [xl= -c/b]

MHegative value. W L

[Boot 1: %1 = (b + sqri(d)/(2*a) | Display the
l answer, x1
| Root 2: %2 = (-b - sqr(d))f(2*a) | '
o= 0
Byre

-
IMeplay the roots
The twe rocts, xl1 and =2

e e —

Combining Pointers & Functions (2)

Now we have considered this, let us consider how we apply this to our quadratic
equation solver

* We know there are input parameters: a,b and c
* The outputs are: x1 and x2
So how do we define this function?

* For the inputs we can use formal parameters (pass actual values)

* For the outputs, pass references to existing variables into which the calculated
values can be placed

Combining Pointers & Functions (3)

Which gives us

void SolveQuadratic (float a, float b, float c, float *x1, float *x2)
| | |

/ /

'Values' COPIED to function ~ Pointers (references)
to existing variables

Remember: All things are copied to functions — even memory addresses

Combining Pointers & Functions (4)

We can improve this a little....

By having a return value that indicates the success (or otherwise) of the function.
We might return:

= O: All is OK, the values in x1 and x2 are the solutions for the supplied
values of a,b, and c

-1 The values supplied were not valid for a quadratic (e.g. a=0)

"-2 The solution is complex and cannot be solved using this function

When using this function, we would examine the return value and ONLY use the
values of x1 & x2 if a value of zero was returned.

This would modify the function to be:

Combining Pointers & Functions (5)

Which gives us

int SolveQuadratic (float a, float b, float c, float *x1, float *x2)
\ | / N / l
The return value would be 'Values' COPIED to function Pointers (references)

checked to determine if to existing variables
there are values of x1 & x2

that can be used.

Remember: All things are copied to functions — even memory addresses

Chapter 15

Pointers: Part 2

Pointers and Arrays (1)

Before we start, a quick reminder...

When we create an array, the memory allocated Is a continuous block (it has to be
so that the nth item can be found)

Each item in the array has its own address which we can obtain, e.g. &yArray[n]

Or we can calculate it as, address of nth item:
Address of n'" item = &yArray [0] + (n * sizeof (array_type))
Address of nth item = MyArray + (n * sizeof (array type))

Reminder:

The name of an array is also the address of the 1st
item (index [0])

Pointers and Arrays (2)

Since each item in an array has its own address, we could

= Create an array of pointers of the same size as the array
= Assign each pointer to its corresponding array item

» e.g. PointerArray[n]= &Array[n]
= Use this array of pointers to access items

This would be a rather ‘pointless’ task as we could just as easily use the original array

There is however no need to do this, just one pointer is enough ©

Pointers and Arrays (3)

It works as pointers can be indexed like an array — we just drop the asterisk
e.g. If we defined an array as

int MyArray[20];

And created a pointer which we ‘point’ to the 1st address (index [0])
int *pArray = &MyArray[0]; (or int *pArray = MyArray;)

To get the nth item from the array we can use EITHER

MyArray[n] OR pArray[n]

Pointers and Arrays: Getting the 15t item

We know from using pointers with single variables that we can obtain the value at a
memory address using the asterisk (pointer dereferencing)

If we again consider

int *pArray = &MyArray[0]; (or int *pArray = MyArray;)

To get the zero item from the array we can use EITHER

MyArray[0] OR pArray[0]

But we could also use: *pArray

LC15\pointer to array 1.c

Pointers and Arrays: Getting the nt" item (1)

Why use this approach?

We can do a ‘clever’ trick to move to the next item in the array
*pPArray++;

This is VERY quick as it adds the sizeof the item to which it points to the current memory address (a single
addition), e.g.

new_address = current_address + sizeof(array type)
rather than having to do the more complex calculation
new_address = base_address + (n * sizeof(array type))

Note: We can also move backward through an array, e.g. *pArray—-;

Pointers and Arrays: Getting the nt" item (2)

NOTE:
When using this approach you still need to be careful that

your code does not go beyond the bounds of the array (forwards or backwards)

LC15\pointer_to_array 2.c

Pointers and Arrays: Getting the nth item (3)

It is also possible to use an index when using this approach, e.g.
*(pArray+n);

However this can get confusing — you may as well use:
pArray[n];

Pointers and Arrays: Getting the nth item (4)

The table below shows the different ways we can access array elements

Pointer approach 1 Pointer Approach 2 | Pointer Approach 2

0 MyArray|[O] pArray[0] *pPArray *pPArray

1 MyArray[1] pArray[1] *(pArray+1) *pArray++

2 MyArray|[2] pArray[2] *(pArray+2) *pArray++

2 MyArray[3] pArray|[3] *(pArray+3) *pPArray++

n MyArrayn] pArray[n] *(pArray+n) I

—

This would only follow if we were moving through the array
We cannot move to an arbitrary location using this approach

Chapter 20

Preprocessor Directives

ﬂl' Preprocessor Directives

e

There are three types we consider

» #include
» #define
» Code formatting (#ifdef, #if etc.)

ﬂ-" Preprocessor Directives - #include

—~~

#include
* Inserts the contents of another file

* This can be a header file associated with a standard library or
one we have created ourselves

* #include <stdio.h> - The <> brackets tell the compiler to
search the path for the file, typically one of the standard libraries

e #include “funcs.h” — The “ indicate that the file will be
found in the current folder

ﬂf Preprocessor Directives — #define

—~~

#define (We will cover this in more detail in Chapter 19)
= Allows us to define a label which we can use in code

* This is then substituted before compiling, e.qg.
#define M_PIl 3.14159265358979323846

* [n code we can then write (say)
Area = M_PI * Radius * Radius;

* What is compiled is
Area = 3.14159265358979323846 * Radius * Radius;

Preprocessor Directives : Formatting (1)

On occasions we may require code that:

» Has a debug version that output additional information but which we never
wish to release

= Has a ‘demo’ version with reduced features

For both of these however we wish only to maintain one set of code file(s)

= \We do not however wish to have to add/remove comment blocks each time to
change modes

We can achieve this using pre-processor directives to select which code is
compiled

= So just having one version!

Preprocessor Directives : Formatting (2)

We do this using conditional statements at the pre-processor stage

The format is much like if/else if/else
The difference is we prefix with a # (and slightly change the commands)

The sets we can use are
#ifdef #telse #endif } These check if a macro
#ifndef #else #endif has been defined (or not)

Hif Helif H#else #endif ———— This does a conditional test
based on the value of a macro

Preprocessor Directives : Formatting (3)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1 -« As we have defined DEBUG_ON

int main(void)
{
#ifdef DEBUG_ON

printf("Debug mode - about to do something\n");
#else

print("Running in standard mode");
#endif

return 0;

Preprocessor Directives : Formatting (4)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG ON 1 -« As we have defined DEBUG_ON

int main(void)

{

#ifdef DEBUG_ON < This condition is true
printf("Debug mode - about to do something\n"); S _

#telse " Thislineisincluded in the
print("Running in standard mode"); code to be compiled

#endif
return 0;

Preprocessor Directives : Formatting (5)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1 -« As we have defined DEBUG_ON

int main(void)

{

#ifdef DEBUG_ON < This condition is true
printf("Debug mode - about to do something\n"); S _

#telse " Thislineisincluded in the

code to be compiled
#endif
return 0; This line is excluded (and will

} appear greyed in VSCode)

Preprocessor Directives : Formatting (6)

So what is actually compiled is...

#include <stdio.h>
#include <conio.h>

#define DEBUG ON 1

int main(void)

{
printf("Debug mode - about to do something\n");
return 0;

}

C20\formatting_directive_example.c

Preprocessor Directives : Formatting (7)

We can also use the
#Hifndef

This will test if a macro is NOT defined and compile if this is the case

As such it works In the opposite to the #ifdef directive

Preprocessor Directives : Formatting (8)

The #if version checks the value of a declared macro, e.g.

#include <stdio.h>
#include <conio.h>

#define DEBUG _ON 1

int main(void)

{
#if DEBUG_ON == 1

printf("Debug mode %d about to do something\n“, DEBUG_ON);
#else

print("Running in standard mode");
#endif

return 9;

¥

It is still possible to use the macro value (as shown above)

C20\conditional_directive_example.c, RobotWriter5.0 Skeleton — serial.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Recap on functions and memory
	Slide 3: Copies of variables are created when function called
	Slide 4: Memory is released on return from function
	Slide 5: Lab 1 Programming Assignment
	Slide 6: Introduction
	Slide 7: Chapter 13
	Slide 8: Pointers (1)
	Slide 9: Pointers (2)
	Slide 10: Pointers (3)
	Slide 11: Pointers: the basics
	Slide 12: Pointers: in practice
	Slide 13: Pointers: Create
	Slide 14: Pointers: Assign
	Slide 15: Pointers: Accessing
	Slide 16: Accessing pointers illustrated (1)
	Slide 17: Accessing pointers illustrated (2)
	Slide 18: Accessing pointers illustrated (3)
	Slide 19: Accessing pointers illustrated (4)
	Slide 20: Pointers: In summary
	Slide 21: Pointers: A quick test
	Slide 22: Chapter 14
	Slide 23: Functions - a review
	Slide 24: Functions
	Slide 25: Now consider this..
	Slide 26: Well...
	Slide 27: Functions using pointers for parameters
	Slide 28: By reference: note the & and * (1)
	Slide 29: By reference: note the & and * (2)
	Slide 30: By reference: note the & and * (3)
	Slide 31: By reference: note the & and * (4)
	Slide 32: By reference: note the & and * (5)
	Slide 33: Memory addresses of Variables (1)
	Slide 34: Memory addresses of Variables (2)
	Slide 35: Summary so far…
	Slide 36: Combining Pointers & Functions (1)
	Slide 37: Combining Pointers & Functions (2)
	Slide 38: Combining Pointers & Functions (3)
	Slide 39: Combining Pointers & Functions (4)
	Slide 40: Combining Pointers & Functions (5)
	Slide 41: Chapter 15
	Slide 42: Pointers and Arrays (1)
	Slide 43: Pointers and Arrays (2)
	Slide 44: Pointers and Arrays (3)
	Slide 45: Pointers and Arrays: Getting the 1st item
	Slide 46: Pointers and Arrays: Getting the nth item (1)
	Slide 47: Pointers and Arrays: Getting the nth item (2)
	Slide 48: Pointers and Arrays: Getting the nth item (3)
	Slide 49: Pointers and Arrays: Getting the nth item (4)
	Slide 50: Chapter 20
	Slide 51: Preprocessor Directives
	Slide 52: Preprocessor Directives - #include
	Slide 53: Preprocessor Directives – #define
	Slide 54: Preprocessor Directives : Formatting (1)
	Slide 55: Preprocessor Directives : Formatting (2)
	Slide 56: Preprocessor Directives : Formatting (3)
	Slide 57: Preprocessor Directives : Formatting (4)
	Slide 58: Preprocessor Directives : Formatting (5)
	Slide 59: Preprocessor Directives : Formatting (6)
	Slide 60: Preprocessor Directives : Formatting (7)
	Slide 61: Preprocessor Directives : Formatting (8)

