
Dr Louise Brown

Computer Engineering
and Mechatronics

MMME3085

Recap on functions and memory

A ‘Frame’ is the term for the block of
memory used by a function

http://www.tenouk.com/ModuleZ.htmlint a (void); // Function prototypes
int b (void); // memory is not allocated until
int c (void); // functions are actually used

int a(void)
{
 b();
 c();
 return 0;
}

int b(void)
{
 return 0;
}

int c(void)
{
 return 0;
 }

int main(void)
{
 a();
 return 0;
}

http://www.tenouk.com/ModuleZ.html

Copies of variables are created when function called

3

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.141592 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

1.0 dRadius

area3.141592

Calculate
Area

3.141592

Memory is released on return from function

4

double CalculateArea (double);

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 area = CalculateArea (radius);
 return 0;

}

// And here is our function

double CalculateArea (double dRadius)
{
 double area;
 area = 3.14159265 * dRadius * dRadius;
 return (area);
}

Memory Used to store

radius

area

1.0
main

3.141592

Lab 1 Programming Assignment

Submit a single .zip file named Lab1PrepXXX.zip,

where XXX are your initials

Submission deadline: 3pm, Thursday 26th October

Anything submitted after 3.01pm will get a late

submission penalty – upload in plenty of time to

avoid technical glitches!

Introduction

▪Today we will cover:

▪Chapter 13 – Pointers – part 1

▪Chapter 14 – Functions – part 2

▪Chapter 15 – Pointers part 2 – using with arrays

▪Chapter 20 – Preprocessor directives

Start recording!!

Pointers: Part 1

Chapter 13

Pointers (1)

This is a key to C but something that needs careful thought

Do not worry if you do not grasp it first time

It is something that needs ‘contemplation’

Pointers (2)

A pointer is a special type of variable in which we store a

memory address

Pointers have the ‘ability’ to know how much storage (in bytes)

the item to which they are pointing takes up in memory

Pointers (3)

Pointers are used (in particular)

▪For Dynamic Arrays

▪For Speed (both in Arrays and when calling functions)

▪To Maximize the use of memory

When using pointers we go directly to a memory address

▪Note: When we get/set a variable, e.g. a=10 the system does this

for us, looking up the memory address of a and then storing the

value 10 at that location.

Pointers: the basics

For each variable type in C we can declare a pointer

Initially a pointer points ‘nowhere’

It is then up to us (as programmers) to create the code that assign to
the pointer to the address of

▪Variable,

▪Array or

▪ Function (we will not be doing this!)

Pointers: in practice

There are three ‘steps’ [*] in using a pointer when accessing an existing
variable

▪Create the pointer

▪Assign to it the address of an existing variable

▪Use the pointer

▪
[*] Note: There is a 4th step when using pointers with arrays, we cover this later

Pointers: Create

We define a pointer in much the same way as any variable, the

only difference is we precede the variable name with a *

Here are a few examples

int *i;
char *c;
float *f;

Pointers: Assign

If we have an existing variable we can request its address with the & operator (you have
been using this in scanf)

Since this an address of the variable, we can then assign it to a pointer that has been
created to store such an address

int *i;
i = &Data;

char *c;
c = &Letter;

float *f;
f = &fVar;

Remember: Pointer type must match variable type

Memory Used to store

Data

Letter

10

Memory
Address

2340

2344

2346
fVar

‘y’

22.3

i

f

c

2340

2344

2346

Pointers: Accessing

Once we have our pointer ‘pointing’ to a memory address we can ‘access’

that address to get/set values.

To indicate that we want to access the memory address stored in a pointer

(the formal term for which is pointer dereferencing) we again use the *

A few examples:

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i

int j = *i; // Get the item at the memory address stored in i

// and store in j

*i = 72; // Store the value 72 in the memory address stored in i

Accessing pointers illustrated (1)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i

int j = *i; // Get the item at the memory address stored in i and store in j

*i = 72; // Store the value 72 in the memory address stored in i

Memory
Data

Letter

10

Memory
Address

2340

2344

2346
fVar

‘y’

22.3

i

f

c

2340

2344

2346

Accessing pointers illustrated (2)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i

int j = *i; // Get the item at the memory address stored in i and store in j

*i = 72; // Store the value 72 in the memory address stored in i

Memory
Data

Letter

10

Memory
Address

2340

2344

2346
fVar

‘y’

22.3

i

f

c

2340

2344

2346

Accessing pointers illustrated (3)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i

int j = *i; // Get the item at the memory address stored in i and store in j

*i = 72; // Store the value 72 in the memory address stored in i

Memory
Data

Letter

10

Memory
Address

2340

2344

2346
fVar

‘y’

22.3

i

f

c

2340

2344

2346

j
10

Accessing pointers illustrated (4)

printf("%d", *i); // Get the item at the memory address stored in i

printf("%c", *c); // Get the item at the memory address stored in i

Int j = *i; // Get the item at the memory address stored in i and store in j

*i = 72; // Store the value 72 in the memory address stored in i

Memory
Data

Letter

72

Memory
Address

2340

2344

2346
fVar

‘y’

22.3

i

f

c

2340

2344

2346

j10

Pointers: In summary

1: Declare variable, e.g.
int a,b;
float c,d;

2: Declare pointer variables
int *p, *q;
float *r, *s

3: Assign memory addresses of variables to pointers
p = &a ; q = &b ; r = &c; s = &d;

4: Pass them or use them !
scanf("%d", p) Note, same as: scanf("%d",&a);
*q = 7;

C13/accessing_via_pointers.c

Pointers: A quick test

What is the value in C following the last executed line?

int a=1, *b, c ; /* Define variable types,
initialise a to 1 */

b = &a; /* b contains the address of a */

c = *b + 1; /* c contains what ? */

Function Programming (Part 2)

Chapter 14

Functions - a review

Functions - a quick reminder

Live outside of ‘main()’ code

▪ They can be in other source files if you wish

▪Have (if required) a prototype in a header file

Functions

All Functions consist of three parts:

▪ Return type

Any valid C variable type or void

▪ Name

A name of your choice

▪ Argument list

At least one valid C variable (or void); multiple ones are separated by
commas

Plus some code of course!

We remember too, a function can return, at most, one thing

Now consider this..

Often when we do a calculation we may want to know a number of
things:

▪ For a set of numbers we might wish to know the minimum,
maximum & average

▪ For a quadratic equation, the two possible solutions

We know we can write functions to do these tasks, but a function can
only return one value

So how do we get round this?

Well...

We could write functions to do each of the tasks individually

▪But this would be very inefficient

▪ e.g.

▪ To find the minimum, max & average of an array of number we
would have to loop across all the variables three times

▪Better (more efficient) to loop once and do all three tasks at the
same time

There is a solution ☺

▪And solution is to use pointers!

Functions using pointers for parameters

By Reference

▪Rather than pass variables to functions, we pass the memory
address where variable(s) are stored

▪Remember: To obtain the memory address of variable we prefix it
with &

Exactly as we have been doing with scanf

This ‘gets round’ the problem of

▪Variables being ‘private’ to functions

So back to the pictures...

By reference: note the & and * (1)

void CalculateArea (double Radius, double *pArea); // note the ‘*’

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 CalculateArea (radius, &area);
 return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)
{
 *pArea = 3.14159265 * Radius * Radius;
 return;
}

Memory Used to store

Memory
Address

2340

2348

By reference: note the & and * (2)

void CalculateArea (double Radius, double *pArea); // note the ‘*’

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 CalculateArea (radius, &area);
 return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)
{
 *pArea = 3.14159265 * Radius * Radius;
 return;
}

Memory Used to store

Memory
Address

2340

2348

radius

area

1.0
main

By reference: note the & and * (3)

void CalculateArea (double Radius, double *pArea); // note the ‘*’

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 CalculateArea (radius, &area);
 return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)
{
 *pArea = 3.14159265 * Radius * Radius;
 return;
}

Memory Used to store

Memory
Address

2340

2348

radius

area

1.0
main

2356

2362

Radius

pArea
Calculate
Area

1.0

2348
Values/Addresses
of the variables

(which are COPIED
to the function)

By reference: note the & and * (4)

void CalculateArea (double Radius, double *pArea); // note the ‘*’

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 CalculateArea (radius, &area);
 return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)
{
 *pArea = 3.14159265 * Radius * Radius;
 return;
}

Memory Used to store

Memory
Address

2340

2348

radius

area

1.0
main

The * here mean we access the memory locations (to get/set values)
The ‘others’ are multiplication signs

2356

2362

Radius

pArea
Calculate
Area

1.0

2348

3.14159265

By reference: note the & and * (5)

void CalculateArea (double Radius, double *pArea); // note the ‘*’

// This is the main code for our application

int main()
{
 double radius, area;
 radius = 1.0;
 CalculateArea (radius, &area);
 return 0;

}

// And here is our function

void CalculateArea (double Radius, double *pArea)
{
 *pArea = 3.14159265 * Radius * Radius;
 return;
}

Memory Used to store

Memory
Address

2340

2348

radius

area

1.0
main

3.14159265

LC14\pointer_function_example_1.c

Memory addresses of Variables (1)

Please note:

▪ In the previous few slides the memory addresses were ‘made up’
for purposes of the example

▪We cannot predict the memory address that a variable will be
stored at

▪ The ‘&’ solves the problem by providing us with the memory
address at which a variable is being stored

Memory addresses of Variables (2)

Expanding the process:

▪ In the 1st example demonstrated we were only calculating one thing

▪As such this was a rather ‘odd’ way to get a result (we could
have just used the return value)

▪ The reason for this approach becomes more obvious when we aim
to calculate multiple things in the same function

▪ e.g. the volume and surface area of a cylinder

LC14\pointer_function_example_2.c

Summary so far…

When we call a function we (if needed) can pass two types of
parameters

▪ Formal: Values (either variables or ‘actual’ values – eg 3.0, ‘a’ etc.).

▪References: The location in MEMORY where VARIABLES are
being stored

In either case please remember

▪ The parameters passed (formal or reference) are COPIED into new
variables that exist in memory as long as the called function runs

Combining Pointers & Functions (1)

Now we have considered this, let us consider how we apply this to our quadratic
equation solver

Combining Pointers & Functions (2)

Now we have considered this, let us consider how we apply this to our quadratic
equation solver

▪ We know there are input parameters: a,b and c

▪ The outputs are: x1 and x2

So how do we define this function?

▪ For the inputs we can use formal parameters (pass actual values)

▪ For the outputs, pass references to existing variables into which the calculated
values can be placed

Combining Pointers & Functions (3)

Which gives us

void SolveQuadratic (float a, float b, float c, float *x1, float *x2)

'Values' COPIED to function Pointers (references)

to existing variables

Remember: All things are copied to functions – even memory addresses

Combining Pointers & Functions (4)

We can improve this a little….

By having a return value that indicates the success (or otherwise) of the function.

We might return:

▪ 0: All is OK, the values in x1 and x2 are the solutions for the supplied
values of a,b, and c

▪ -1 The values supplied were not valid for a quadratic (e.g. a=0)

▪ -2 The solution is complex and cannot be solved using this function

When using this function, we would examine the return value and ONLY use the
values of x1 & x2 if a value of zero was returned.

This would modify the function to be:

Combining Pointers & Functions (5)

Which gives us

int SolveQuadratic (float a, float b, float c, float *x1, float *x2)

'Values' COPIED to function Pointers (references)

to existing variables

Remember: All things are copied to functions – even memory addresses

The return value would be

checked to determine if

there are values of x1 & x2

that can be used.

Pointers: Part 2

Chapter 15

Pointers and Arrays (1)

Before we start, a quick reminder…

When we create an array, the memory allocated is a continuous block (it has to be
so that the nth item can be found)

Each item in the array has its own address which we can obtain, e.g. &MyArray[n]

Or we can calculate it as, address of nth item:

Address of nth item = &MyArray [0] + (n * sizeof (array_type))

Address of nth item = MyArray + (n * sizeof (array_type))

Reminder:

The name of an array is also the address of the 1st

item (index [0])

Pointers and Arrays (2)

Since each item in an array has its own address, we could

▪ Create an array of pointers of the same size as the array

▪ Assign each pointer to its corresponding array item

▪ e.g. PointerArray[n]= &Array[n]

▪ Use this array of pointers to access items

This would be a rather ‘pointless’ task as we could just as easily use the original array

There is however no need to do this, just one pointer is enough ☺

Pointers and Arrays (3)

It works as pointers can be indexed like an array – we just drop the asterisk

e.g. If we defined an array as

int MyArray[20];

And created a pointer which we ‘point’ to the 1st address (index [0])

int *pArray = &MyArray[0]; (or int *pArray = MyArray;)

To get the nth item from the array we can use EITHER

MyArray[n] OR pArray[n]

Pointers and Arrays: Getting the 1st item

We know from using pointers with single variables that we can obtain the value at a
memory address using the asterisk (pointer dereferencing)

If we again consider

int *pArray = &MyArray[0]; (or int *pArray = MyArray;)

To get the zero item from the array we can use EITHER

MyArray[0] OR pArray[0]

But we could also use: *pArray

LC15\pointer_to_array_1.c

Pointers and Arrays: Getting the nth item (1)

Why use this approach?

We can do a ‘clever’ trick to move to the next item in the array

*pArray++;

This is VERY quick as it adds the sizeof the item to which it points to the current memory address (a single
addition), e.g.

new_address = current_address + sizeof(array type)

rather than having to do the more complex calculation

new_address = base_address + (n * sizeof(array type))

Note: We can also move backward through an array, e.g. *pArray–-;

Pointers and Arrays: Getting the nth item (2)

NOTE:

When using this approach you still need to be careful that

your code does not go beyond the bounds of the array (forwards or backwards)

LC15\pointer_to_array_2.c

Pointers and Arrays: Getting the nth item (3)

It is also possible to use an index when using this approach, e.g.

*(pArray+n);

However this can get confusing – you may as well use:

pArray[n];

Pointers and Arrays: Getting the nth item (4)

The table below shows the different ways we can access array elements

Array index From array Pointer approach 1 Pointer Approach 2 Pointer Approach 2

0 MyArray[0] pArray[0] *pArray *pArray

1 MyArray[1] pArray[1] *(pArray+1) *pArray++

2 MyArray[2] pArray[2] *(pArray+2) *pArray++

2 MyArray[3] pArray[3] *(pArray+3) *pArray++

n MyArray[n] pArray[n] *(pArray+n)

This would only follow if we were moving through the array
We cannot move to an arbitrary location using this approach

Preprocessor Directives

Chapter 20

Preprocessor Directives

There are three types we consider
▪ #include

▪ #define

▪ Code formatting (#ifdef, #if etc.)

Preprocessor Directives - #include

#include

• Inserts the contents of another file

• This can be a header file associated with a standard library or
one we have created ourselves

• #include <stdio.h> - The <> brackets tell the compiler to
search the path for the file, typically one of the standard libraries

• #include “funcs.h” – The “” indicate that the file will be
found in the current folder

Preprocessor Directives – #define

#define (We will cover this in more detail in Chapter 19)

▪ Allows us to define a label which we can use in code

▪ This is then substituted before compiling, e.g.

#define M_PI 3.14159265358979323846

▪ In code we can then write (say)

Area = M_PI * Radius * Radius;

▪ What is compiled is

Area = 3.14159265358979323846 * Radius * Radius;

Preprocessor Directives : Formatting (1)

On occasions we may require code that:

▪ Has a debug version that output additional information but which we never
wish to release

▪ Has a ‘demo’ version with reduced features

For both of these however we wish only to maintain one set of code file(s)

▪ We do not however wish to have to add/remove comment blocks each time to
change modes

We can achieve this using pre-processor directives to select which code is
compiled

▪ So just having one version!

Preprocessor Directives : Formatting (2)

We do this using conditional statements at the pre-processor stage

The format is much like if/else if/else

The difference is we prefix with a # (and slightly change the commands)

The sets we can use are

#ifdef #else #endif

#ifndef #else #endif

#if #elif #else #endif

These check if a macro
has been defined (or not)

This does a conditional test
based on the value of a macro

Preprocessor Directives : Formatting (3)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1

int main(void)
{
#ifdef DEBUG_ON
 printf("Debug mode - about to do something\n");
#else
 print("Running in standard mode");
#endif

 return 0;
}

As we have defined DEBUG_ON

Preprocessor Directives : Formatting (4)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1

int main(void)
{
#ifdef DEBUG_ON
 printf("Debug mode - about to do something\n");
#else
 print("Running in standard mode");
#endif

 return 0;
}

As we have defined DEBUG_ON

This condition is true

This line is included in the
code to be compiled

Preprocessor Directives : Formatting (5)

Consider:

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1

int main(void)
{
#ifdef DEBUG_ON
 printf("Debug mode - about to do something\n");
#else
 print("Running in standard mode");
#endif

 return 0;
}

As we have defined DEBUG_ON

This condition is true

This line is included in the
code to be compiled

This line is excluded (and will
appear greyed in VSCode)

Preprocessor Directives : Formatting (6)

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1

int main(void)
{
 printf("Debug mode - about to do something\n");
 return 0;
}

So what is actually compiled is…

C20\formatting_directive_example.c

Preprocessor Directives : Formatting (7)

We can also use the

#ifndef

This will test if a macro is NOT defined and compile if this is the case

As such it works in the opposite to the #ifdef directive

Preprocessor Directives : Formatting (8)

The #if version checks the value of a declared macro, e.g.

#include <stdio.h>
#include <conio.h>

#define DEBUG_ON 1

int main(void)
{
#if DEBUG_ON == 1
 printf("Debug mode %d about to do something\n“, DEBUG_ON);
#else
 print("Running in standard mode");
#endif

 return 0;
}

It is still possible to use the macro value (as shown above)
C20\conditional_directive_example.c, RobotWriter5.0_Skeleton – serial.c

	Slide 1: Computer Engineering and Mechatronics MMME3085
	Slide 2: Recap on functions and memory
	Slide 3: Copies of variables are created when function called
	Slide 4: Memory is released on return from function
	Slide 5: Lab 1 Programming Assignment
	Slide 6: Introduction
	Slide 7: Chapter 13
	Slide 8: Pointers (1)
	Slide 9: Pointers (2)
	Slide 10: Pointers (3)
	Slide 11: Pointers: the basics
	Slide 12: Pointers: in practice
	Slide 13: Pointers: Create
	Slide 14: Pointers: Assign
	Slide 15: Pointers: Accessing
	Slide 16: Accessing pointers illustrated (1)
	Slide 17: Accessing pointers illustrated (2)
	Slide 18: Accessing pointers illustrated (3)
	Slide 19: Accessing pointers illustrated (4)
	Slide 20: Pointers: In summary
	Slide 21: Pointers: A quick test
	Slide 22: Chapter 14
	Slide 23: Functions - a review
	Slide 24: Functions
	Slide 25: Now consider this..
	Slide 26: Well...
	Slide 27: Functions using pointers for parameters
	Slide 28: By reference: note the & and * (1)
	Slide 29: By reference: note the & and * (2)
	Slide 30: By reference: note the & and * (3)
	Slide 31: By reference: note the & and * (4)
	Slide 32: By reference: note the & and * (5)
	Slide 33: Memory addresses of Variables (1)
	Slide 34: Memory addresses of Variables (2)
	Slide 35: Summary so far…
	Slide 36: Combining Pointers & Functions (1)
	Slide 37: Combining Pointers & Functions (2)
	Slide 38: Combining Pointers & Functions (3)
	Slide 39: Combining Pointers & Functions (4)
	Slide 40: Combining Pointers & Functions (5)
	Slide 41: Chapter 15
	Slide 42: Pointers and Arrays (1)
	Slide 43: Pointers and Arrays (2)
	Slide 44: Pointers and Arrays (3)
	Slide 45: Pointers and Arrays: Getting the 1st item
	Slide 46: Pointers and Arrays: Getting the nth item (1)
	Slide 47: Pointers and Arrays: Getting the nth item (2)
	Slide 48: Pointers and Arrays: Getting the nth item (3)
	Slide 49: Pointers and Arrays: Getting the nth item (4)
	Slide 50: Chapter 20
	Slide 51: Preprocessor Directives
	Slide 52: Preprocessor Directives - #include
	Slide 53: Preprocessor Directives – #define
	Slide 54: Preprocessor Directives : Formatting (1)
	Slide 55: Preprocessor Directives : Formatting (2)
	Slide 56: Preprocessor Directives : Formatting (3)
	Slide 57: Preprocessor Directives : Formatting (4)
	Slide 58: Preprocessor Directives : Formatting (5)
	Slide 59: Preprocessor Directives : Formatting (6)
	Slide 60: Preprocessor Directives : Formatting (7)
	Slide 61: Preprocessor Directives : Formatting (8)

